Отличие каскадной аис от спиральной. Жизненный цикл автоматизированной информационной системы

Этап физического моделирования должен обеспечить на экспериментальном уровне проверку реальной работоспособности созданных моделей АИС и их адекватность. Для реализации этого этапа разрабатывается физическая (натурная) модель АИС. Физическая модель АИС - это совокупность структуры, методов и средств редуцированного натурного воплощения АИС, предназначенная для проверки в реальных условиях работоспособности будущей системы и адекватности ее моделей.

В определенном отношении физическая модель АИС обладает свойствами реальной системы. Для ее построения привлекаются ЭВМ, периферийные устройства, документы, файлы, БД, программы обработки данных и другие компоненты, необходимые для создания АИС. Физическая модель АИС редуцированная, т.е. это ее уменьшенное отображение. Уменьшение здесь не механическое, не произвольное, а гармонизированное. В ней представлены только те свойства, которые разработчики отнесли к разряду основных, существенных.

3. Проектирование АИС

На основе разработанных принципов, положений, моделей, методов и средств построения АИС, полученных на стадии исследования, проводится проектирование системы.

Стадия проектирования состоит из следующих этапов:

1) предметное обследование (ПРО) существующей (традиционной) ИС;

2) разработка технического задания на создание системы;

3) разработка технического проекта на создание системы;

4) разработка рабочего проекта на создание системы.

При условии, что существующая ИС является автоматизированной возможно два пути проектирования: модернизация имеющейся АИС или ее полная замена вновь создаваемой АИС. При сравнительно небольших объемах проектных работ этапы 2 и 3 могут быть объединены.

Этап ПРО проводится с целью изучения и анализа особенностей объекта - существующей традиционной ИС. Осуществляется сбор материалов для проектирования - определение требований, изучение объекта проектирования. Проводится изучение условий функционирования будущей АИС, устанавливаются определенные ограничения на условия разработки - сроки выполнения этапов проектирования, имеющиеся и недостающие ресурсы, процедуры и мероприятия, обеспечивающие защиту информации и др. С учетом предварительно выполненных исследований проводится разработка и выбор варианта концепции АИС.

Этап разработки ТЗ - логическое продолжение этапа ПРО. Материалы, полученные на этапе ПРО используются для разработки ТЗ. Здесь проводится анализ и разработка принципиальных требований, предъявляемых к АИС со стороны конкретного заказчика или потенциальной группы потребителей. Формулируются требования к аппаратным, программным, информационным и организационно-правовым компонентам АИС и др.

На этапе технического проектирования проводится поиск наиболее приемлемых решений по всем задачам проектирования АИС. Цель этого этапа проектирования - конкретизация общих, иногда нечетких знаний о требованиях к будущей системе. На данном этапе определяются:

­ цель, задачи, функции АИС, рассматриваются также внешние условия функционирования системы, распределение функций между ее компонентами;

­ системные параметры АИС - интерфейсы и распределение функций между оператором и системой;

­ конфигурация всех подсистем АИС, образующих её структуру - документационно-информационная, техническая, программно-математическая и организационно-правовая составляющие структуры системы;

­ структура и система управления БД, лингвистические средства, состав информационно-поисковых языков, классификаторов и кодификаторов, методик индексирования документов и запросов;

­ ведомость конфигурации комплекса технических средств АИС и их спецификация;

­ состав и характеристика математических моделей, алгоритмов и программ АИС;

­ схема функционирования АИС, технологического процесса обработки данных и др.;

­ должностные и рабочие инструкции для персонала АИС;

­ уточненное технико-экономическое обоснование проекта.

Основную долю трудоемкости рабочего проектирования составляют работы по разработке алгоритмов и соответствующих программ.

На этапе рабочего проектирования проводится окончательная доводка тех вопросов, которые на этапе технического проектирования по опделенным причинам не могли быть полностью решены. На данном этапе разрабатывается комплекс программ на основе алгоритмов, составленных на этапе технического проектирования. Уточняется структура БД, проводится корректировка унифицированных форматов документов, обрабатываемых в технологии АИС.

На этом этапе проводится тестирование программ, серия контрольных испытаний с обработкой реальных документов, анализируются результаты тестирования и экспериментальной обработки, необходимые корректировки программ.

Методы и средства проектирования АИС. Проектирование АИС может выполняться:

­ сторонней фирмой-разработчиком. Эта фирма имеет штат высококвалифицированных профессионалов. Работа проводится на основании договора между фирмой-разработчиком и фирмой-заказчиком;

­ силами штатных специалистов фирмы-заказчика.

Возможно и компромиссное решение: фирма-заказчик может пригласить консультанта по разработке АИС на контрактной основе.

Конкретный выбор определяется многими факторами, в частности финансовым состоянием фирмы-заказчика, наличием у нее штатных специалистов соответствующего профиля и уровня, сроками создания АИС, наличием в данном или близлежащем регионе соответствующей фирмы-разработчика, специалистов-консультантов, режимом секретности фирмы и, др.

Для решения задач проектирования применяются соответствующие методы и средства. Среди них следует находить такие методы, которые радикально решали бы задачи разработки АИС. Один из таких методов - структурный анализ. Это метод изучения системы, который рассматривает систему как иерархическую структуру от ее общего уровня до необходимого низшего.

На этапе предпроектного обследования используются методы изучения фактического состояния существующей (традиционной) ИС:

­ устный или письменный опрос;

­ письменное анкетирование;

­ наблюдение, измерение и оценка;

­ обсуждение промежуточных результатов;

­ анализ задач;

­ анализ производственных, управленческих и информационных

­ процессов.

Методы формирования задаваемого состояния связаны с теоретическим обоснованием всех составных частей АИС с учетом целей, требований и условий заказчика. Сюда относятся:

­ моделирование процессов обработки данных;

­ структурное проектирование;

­ декомпозиция;

­ анализ информационной технологии.

Для наглядного представления объектов и процессов АИС методы графического отображения фактического и задаваемого состояний используют - блок-схемы, графики, рисунки, чертежи, эскизы, диаграммы и др.

4. Автоматизация проектирования АИС

Автоматизированные системы проектирования - эффективное средство улучшения показателей проектирования АИС. В области проектирования сформировалось особое направление - программная инженерия или CASE-технологии (Computer-Aided Software/System Engineering - система компьютерной разработки программного обеспечения). CASE-технологии - это совокупность методов анализа, проектирования, разработки и провождения АИС, поддержанных комплексом взаимосвязанных средств автоматизации. CASE-технологии - это средство для системных аналитиков, разработчиков и программистов, обеспечивающее автоматизацию процессов проектирования АИС различного класса и значения.

Основная цель CASE-технологии - максимально автоматизировать процесс разработки и отделить процесс проектирования от кодирования программных средств АИС.

Структурные методы построения моделей предприятий. Структурным принято называть такой метод исследования системы или процесса, который начинается с общего обзора объекта исследования, а затем предполагает его последовательную детализацию. Структурные методы имеют три основные особенности:

Расчленение сложной системы на части, представляемые как «черные ящики», каждый «черный ящик» реализует определенную функцию системы управления;

Иерархическое упорядочение выделенных элементов системы с определением взаимосвязей между ними;

Использование графического представления взаимосвязей элементов системы.

Модель, построенная с применением структурных методов, представляет собой иерархический набор диаграмм, графически изображающих выполняемые системой функции и взаимосвязи между ними.

В составе методологий структурного анализа к наиболее распространенным можно отнести следующие:

SADT - технология структурного анализа и проектирования, и ее подмножество - стандарт IDEFO.

DFD - диаграммы потоков данных.

ERD - диаграммы «сущность - связь».

STD - диаграммы переходов состояний.

В методологии IDEFO используются четыре основных понятия: функциональный блок, интерфейсная дуга, декомпозиция, глоссарий.

Модель IDEFO всегда начинается с представления процесса единого функционального блока с интерфейсными дугами, выходящими за пределы рассматриваемой области. Иногда такие диаграммы снабжаются контекстной справкой.

Цель выделяет те направления деятельности предприятия, которые следует рассматривать прежде всего. Цель устанавливает направление и уровень декомпозиции разрабатываемой модели.

В методологии DFD исследуемый процесс разбивается на подпроцессы и представляется в виде сети, связанной потоками данных. Внешне DFD похожа на SADT, но отличается по набору используемых элементов. В их число входят процессы, потоки данных и хранилища.

Методология ERD применяется для построения моделей БД, обеспечивает стандартизованный способ описания данных и определение связей между ними. Основные элементы методологии - понятия «сущность», «отношение» и «связь». Сущность задают базовые типы информации, а отношения указывают, как эти типы данных взаимодействуют между собой. Связи объединяют сущности и отношения.

Методология STD наиболее удобна для моделирования определенных сторон функционирования системы, обусловленных временем и откликом на события, например для реализации запроса пользователя к АИПС в рамках реального масштаба времени. Опорными элементами STD служат понятия «состояние», «начальное состояние», «переход», «условие» и «действие». Посредством понятий проводится описание функционирования системы во времени и в зависимости от событий. Модель STD представляет собой графическое изображение - диаграмму переходов системы из одного состояния в другое.

Объектно-ориентированные методы построения моделей системы управления. Эти методы отличаются от структурных более высоким уровнем абстракции. Они основаны на представлении системы в виде совокупности объектов, взаимодействующих между собой путем обмена данными. В качестве объектов предметной области могут служить конкретные предметы или абстрагированные сущности - заказ, клиент и т.п. Наиболее значим метод Г. Буча. Это техника объектного проектирования с элементами объектного анализа, имеющая четыре этапа:

1) разработка диаграммы аппаратных средств, отображающей процессы, устройства, сети и их соединения;

2) определение структуры класса, описывающей связь между классами и объектами;

3) разработка диаграмм объектов, которые показывают взаимосвязь объекта с другими объектами;

4) разработка архитектуры ПО, описывающей физический проект создаваемой системы.

Подавляющая часть существующих методов объектно-ориентированного анализа и проектирования включает в себя как язык моделирования, так и средства описания процессов моделирования.

Объектно-ориентированный подход не противопоставляется структурному, а может служить его дополнением.

5. Построение и внедрение АИС

После полного завершения работ по проектированию начинается этап построения АИС. Построение АИС - это совокупность организационно-технических мероприятий по реализации проекта АИС. Среди таких мероприятий меры финансового, информационного, технического, программного, правого, организационного характера:

Определение источников финансирования и выделение средств на закупку необходимого оборудования, предусмотренного проектом, - «Ведомость спецификации оборудования АИС»;

Выбор поставщиков и заключение контрактов на поставку оборудования;

Выделение помещения для дислокации АИС и его подготовка к монтажу оборудования;

Размещение, сборка, монтаж, настройка оборудования АИС в соответствии с проектом;

Подбор, организация и обучение категорий штатного персонала АИС выполнению соответствующих работ по обеспечению функционирования АИС;

Выполнение работ по проверке качества оборудования (контроль, тестирование). При обнаружении дефектов - оформление и предъявление рекламаций к поставщикам;

Инсталляция ПО и выполнение работ по тестированию программного комплекса АИС. При условии обнаружения дефектов - принятие мер по их устранению;

Наполнение БД, решение контрольных примеров по всему комплексу задач АИС в соответствии с проектом. При обнаружении недостатков - принятие мер к их устранению. Если недостатков не обнаружено - подготовка документов для сдачи АИС в опытную эксплуатацию.

Состав мер и их последовательность отражают основные контрольные точки в построении АИС. Построение каждой конкретной системы будет иметь свою специфику как по характеру задач, так и по их последовательности. Особенности построения определяются характером АИС, организационным уровнем применения АИС, режимом функционирования, объемом финансирования и др.

Одно из важных условий эффективности АИС - проведение комплекса работ по ее внедрению. Внедрение АИС начинается с того, что руководитель фирмы-заказчика выпускает приказ о внедрении системы с указанием основных этапов, сроков их выполнения, ответственных исполнителей, ресурсного обеспечения, формы представления результатов внедрения, ответственного за контроль исполнения приказа и др. Приказ может содержать план внедрения с указанием работ по следующим этапам:

1) документальное оформление результатов пусконаладочных работ оборудования, а также контрольных испытаний комплекса задач системы;

2) обучение персонала технологии АИС и изучение соответствующих разделов проектной документации;

3) проведение опытной эксплуатации системы, анализ и корректировка проектных ошибок и оформление документации по результатам опытной эксплуатации;

4) сдача АИС в производственную эксплуатацию с оформлением соответствующей документации.

Таким образом, на первом этапе проводится разработка программы контрольных испытаний АИС в целом. На втором этапе разработчик и заказчик организуют обучение персонала, привлекаемого к эксплуатации АИС. На третьем этапе проводится опытная эксплуатация системы. В зависимости от содержания и объема задач АИС опытная эксплуатации длится от трех до шести месяцев.

Внедрение АИС - достаточно сложная задача как в организационном, так и техническом аспектах. Заказчик должен провести подготовку внедрения системы. Данное условие требует определенных организационных, профессиональных и психологических усилий со стороны персонала фирмы-заказчика, в той или иной мере участвующего в эксплуатации АИС. Администрация фирмы должна обеспечить такие условия, при которых коллектив фирмы будет положительно относиться к реализации системы и помогать ее внедрению, освоении и развитию. Тогда можно будет предположить, что цель внедрения и функционирования АИС на предприятии будет достигнута.

6. Методика расчета технико-экономической эффективности автоматизированной обработки информации

Один из принципиальных разделов проекта АИС - технико-экономическое обоснование АИС вообще и процессов автоматизированной обработки экономической информации в частности. Для этого требуется проведение соответствующих расчетов технико-экономической эффективности.

Экономическая эффективность автоматизированной обработки данных обеспечивается за счет следующих основных факторов:

Высокой скорости выполнения операций по сбору, передаче, обработке и выдаче информации, быстродействия технических средств;.

Максимального сокращения времени на выполнение отдельных операций;

Улучшения качества обработки данных и получаемой информации.

Общая эффективность автоматизированного решения задач находится в прямой зависимости от снижения затрат на обработку данных и составляет прямую экономическую эффективность. Достижение эффекта от общесистемных решений по улучшению качества информационного обслуживания пользователей обеспечивает косвенную экономическую эффективность.

Показатели прямой экономической эффективности определяются путем сравнения затрат на обработку данных при нескольких вариантах проектных решений. По существу это сравнение двух вариантов - базового и спроектированного. За базовый вариант принимается существующая система автоматизированной или традиционной (ручной) обработки данных, а за спроектированный вариант - результат модернизации существующей системы или вновь разработанная АИС.

Абсолютный показатель экономической эффективности разрабатываемого проекта АИС - снижение годовых стоимостных и трудовых затрат на технологический процесс обработки данных по сравнению с базовым вариантом ТПОД.

Экономия финансовых затрат за счет автоматизации обработки данных определяется на основе расчета разницы затрат базисного и проектируемого вариантов обработки данных по формуле:

С э = С б – С п (1)

где С э - величина снижения затрат на обработку данных;

С б - затраты при базисном варианте;

С п - затраты при проектируемом варианте.

Относительный показатель экономической эффективности проекта АИС - коэффициент эффективности (К э) затрат и индекс изменения затрат (I з).

К э = С э / С б * 100 % (2)

Коэффициент эффективности затрат показывает, какая часть затрат будет сэкономлена при проектируемом варианте АИС, или на сколько процентов снизятся затраты.

Значение индекса изменения затрат можно определить по формуле:

I з = С э / С б. (3)

Этот индекс свидетельствует о том, во сколько раз снизятся затраты на обработку данных при реализации проекта АИС.

При внедрении проекта АИС необходимо учитывать дополнительные капитальные затраты, значение которых (К 3) можно определить по формуле:

K 3 = K п – K б (4)

где K п и K б - капитальные затраты соответственно проектируемой и базовой систем обработки данных.

Эффективность капитальных затрат определяется сроком окупаемости (Т) дополнительных капитальных затрат на модернизацию ИС:

Т = K 3 / С э (5)

Е = С э / K 3 = 1 / Т. (6)

Наряду с расчетом стоимостных затрат полезно получение показателей снижения трудовых затрат на обработку данных. Абсолютным показателем снижения трудовых затрат (t) выступает разность между годовыми трудовыми затратами базового и проектируемого вариантов обработки данных:

t = Т б. – Т п (7)

где Т б. и Т п - годовая трудоемкость эксплуатации соответственно базового и проектируемого вариантов обработки данных.

Значение относительного показателя снижения трудовых затрат можно отобразить коэффициентом снижения трудовых затрат (К):

K t = t / T б. (8)

Индекс изменения трудовых затрат (I t) характеризует рост производительности труда за счет освоения более трудосберегающего варианта проекта обработки данных, его можно определить по формуле:

I t = Т б / Т п. (9)

Абсолютный показатель снижения трудовых затрат (Р) применяется для определения потенциального высвобождения трудовых ресурсов (исполнителей) из системы обработки данных:

Р = (t / Т ф) * f (10)

где Т ф – годовой фонд времени одного исполнителя, занятого в технологии обработки данных;

f - коэффициент, отображающий возможность полного высвобождения работников, за счет фонда времени которых рассчитана величина t.

Определение прямой экономии от внедрения проектируемой (модернизированной) системы обработки данных проводится на базе сравнения показателей, отображающих трудовые и стоимостные затраты по операциям как традиционной, так и проектируемой системы обработки данных.

Экономию трудовых затрат (Э тз) при автоматизированной обработке информации по проекту можно определить по формуле

Э тз = Т о6щ – Т сов (11)

где Т о6щ - трудоемкость обработки данных традиционным способом при базовым варианте;

Т сов - трудоемкость автоматизированной обработки данных при проектном варианте.

Экономию финансовых затрат от внедрения проектного варианта обработки данных в сравнении с ручным базисным вариантом можно определить аналогичным образом.

Сбор исходных данных для подстановки в вышеприведенные формулы и выполнение расчетов по определению экономической эффективности проводится путем регистрации и замеров соответствующих параметров по этапам технологического процесса обработки данных. Кроме того, исходные данные за длительный период могут быть получены путем анализа регистрационных (технологических) журналов диспетчера АИС и других форм регистрации.

Модель жизненного цикла - структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач, выполняемых на протяжении ЖЦ.

Наибольшее распространение получили две основные модели ЖЦ:

· каскадная модель (70-85 гг.);

· спиральная модель (86-90 гг.).

Каскадная модель

Каскадный способ - разбиение всей разработки на этапы, причем переход с одного этапа на следующий происходит только после того, как будет полностью завершена работа на текущем (рис.2).

Положительные стороны применения каскадного подхода:

· на каждом этапе формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности;

· выполняемые в логичной последовательности этапы работ позволяют планировать сроки завершения всех работ и соответствующие затраты.

Каскадный подход хорошо зарекомендовал себя при построении информационных систем, для которых в самом начале разработки можно достаточно точно и полно сформулировать все требования. В эту категорию попадают сложные расчетные системы, системы реального времени и другие подобные задачи.

Рис.2 Схема каскадного подхода

Однако реально в процессе создания ИС постоянно возникает потребность в возврате к предыдущим этапам, уточнении или пересмотре ранее принятых решений. Реальный процесс создания информационной системы принимает следующий вид (рис.3):

Рис.3 Реальный процесс создания ИС на базе каскадной модели

Одно из использовавшихся в западной литературе названий такой схемы организации работ: "водопадная модель" (waterfall model).

Основным недостатком каскадного подхода является существенное запаздывание с получением результатов. Модели (как функциональные, так и информационные) автоматизируемого объекта могут устареть одновременно с их утверждением. Другой недостаток - такое проектирование информационной системы ведет к примитивной автоматизации (по сути - "механизации") существующих производственных действий работников.

В спиральной модели жизненного цикла (рис.4) делается упор на начальные этапы ЖЦ: анализ и проектирование. Реализуемость технических решений проверяется путем создания прототипов.

Рис 4.

Каждый виток спирали соответствует созданию нового фрагмента или версии информационной системы, на нем уточняются цели и характеристики проекта, определяется его качество и планируются работы следующего витка спирали. Один виток спирали при этом представляет собой законченный проектный цикл по типу каскадной схемы. Такой подход назывался также "Продолжающимся проектированием". Позднее в проектный цикл дополнительно стали включать стадии разработки и опробования прототипа системы. Это называлось: "быстрое прототипирование", rapid prototyping approach или "fast-track".

Однако применение таких методов наряду с быстрым эффектом дает снижение управляемости проектом в целом и стыкуемости различных фрагментов информационной системы. Основная проблема спирального цикла - определение момента перехода на следующий этап. Переход осуществляется в соответствии с планом, даже если не вся запланированная работа закончена. План составляется на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков.

Модели ЖЦ АИС – Структура, определяющая последовательное осуществление процессов, действий, задач, выполняемых на протяжении ЖЦ и взаимосвязи между этими процессами.

Каскадная модель. Переход на следующий этап означает полное завершение работ на предыдущем этапе. Требования, определенные на стадии формирования требований, строго документируются в виде технического задания и фиксируются на все время разработки проекта. Каждая стадия завершается выпуском полного комплекта документации, достаточной для того, чтобы разработка могла быть продолжена другой командой разработчиков.

Этапы проекта в соответствии с каскадной моделью:

1. Формирование требований;

2. Проектирование;

3. Разработка;

4. Тестирование;

5. Внедрение;

6. Эксплуатация и сопровождение.

Преимущества:

-Полная и согласованная документация на каждом этапе;

-Определенный порядок последовательности работ;

-Позволяет четко спланировать сроки и затраты.

Недостатки:

-Существенная задержка получения готовых результатов;

-Ошибки на любом из этапов выявляются на последующих этапах, что приводит к необходимости возврата и переоформление проектной документации;

-Сложность управления проектом.

Спиральная модель. Каждая итерация соответствует созданию фрагмента или версии ПО, на ней уточняются цели и характеристики проекта, оценивается качество полученных результатов и планируются работы следующей итерации.

Каждая итерация – законченные циклы разработки в виде 1й версии АИС.

Этапы итерации:

1.Формирование требований

3.Проектирование

4.Разработка

5.Интеграция

На каждой итерации оцениваются:

Риск превышения сроков и стоимости проекта;

Необходимость выполнения ещё одной итерации;

Степень полноты и точности понимания требований к системе;

Целесообразность прекращения проекта.

Преимущества:

-Упрощается процесс внесения изменений в проект;

-Обеспечивает большую гибкость в управлении проектом;

-Возможность получения надежной и устойчивой системы, т.к. ошибки и несоответствия обнаруживаются на каждой итерации;

-Влияние заказчика на работу в процессе проверки каждой итерации.

Недостатки:

-Сложность планирования;

-Напряженный режим работы для разработчиков;

-Планирование работ проводится на основе имеющегося опыта и недостаточно метрик для измерения качества каждой версии.

Требования к технологии проектирования, разработки и сопровождения АИС

Технология проектирования - определяет совокупность трех составляющих:



-пошаговой процедуры, определяющей последовательность технологических операций проектирования;

-правила, используемые для оценки результатов выполнения технологических операций;

-представление проектной разработки на экспертизу и утверждению.

Технологические инструкции, составляющие основное содержание технологии, должны состоять из описания последовательности технологических операций, условий, в зависимости от которых выполняется та или иная операция, и описаний самих операций.

Технология проектирования, разработки и сопровождения ИС должна удовлетворять следующим общим требованиям:

Технология должна поддерживать полный ЖЦ ПО;

Технология должна обеспечивать гарантированное достижение целей разработки ИС с заданным качеством и в установленное время;

Технология должна обеспечивать возможность ведения работ по проектированию отдельных подсистем небольшими группами (3-7 человек). Это обусловлено принципами управляемости коллектива и повышения производительности за счет минимизации числа внешних связей;

Технология должна предусматривать возможность управления конфигурацией проекта, ведения версий проекта и его составляющих, возможность автоматического выпуска проектной документации и синхронизацию ее версий с версиями проекта;

Применение любой технологии проектирования, разработки и сопровождения ИС в конкретной организации и конкретном проекте невозможно без выработки ряда стандартов (правил, соглашений), которые должны соблюдаться всеми участниками проекта. К таким стандартам относятся следующие:

-стандарт проектирования;

-стандарт оформления проектной документации;

-стандарт пользовательского интерфейса.

Требование разработки

- Выполнение работ по созданию программного обеспечения;

Подготовка к внедрению АИС;



Контроль, тестирование основных показателей проекта.

Требования к сопровождению

Завершение внедрения КИС должно сопровождаться публикацией системы административных регламентов и должностных инструкций, определяющих порядок функционирования организации. С момента ввода информационной системы в действие эксплуатация происходит на основе «Регламента функционирования информационной системы» и ряда нормативных актов. Сопровождение системы и ее бесперебойной работы осуществляется подразделением организации, уполномоченным соответствующим приказом. Доработка информационной системы после ввода в эксплуатацию осуществляется согласно отдельным проектам и техническим заданиям.

В процессе сопровождения КИС ставится задача поддержания ее жизнеспособности. Жизнеспособность КИС во многом определяется насколько она соответствует реальным задачам и потребностям ВУЗа, которые являются меняющимися в течение жизненного цикла КИС.

ЖЦИС - это период создания и использования ИС, начиная с момента возникновения потребности в ИС и заканчивая моментом полного ее выхода из эксплуатации.

Стадии жизненного цикла информационной системы:

1. Предпроектное обследование:

· сбор материалов для проектирования, при этом выделяют формулирование требований, с изучения объекта автоматизации, даются предварительные выводы предпроектного варианта ИС;

· анализ материалов и разработка документации, обязательно дается технико экономическое обоснование с техническим заданием на проектирование ИС.

2. Проектирование:

2.1 предварительное проектирование;

· выбор проектных решений по аспектам разработки ИС;

· описание реальных компонент ИС;

· оформление и утверждение технического проекта (ТП).

2.2 детальное проектирование:

· выбор или разработка математических методов или алгоритмов программ;

· корректировка структур БД;

· создание документации на доставку и установку программных продуктов;

· выбор комплекса технических средств с документацией на ее установку.

2.3 разработка техно-рабочего проекта ИС (ТРП).

2.4 разработка методологии реализации функций управления с помощью ИС и описанием регламента действий аппарата управления.

3. Разработка ИС:

· получение и установка технических и программных средств;

· тестирование и доводка программного комплекса;

· разработка инструкций по эксплуатации программно-технических средств.

4. Ввод ИС в эксплуатацию:

· ввод технических средств;

· ввод программных средств;

· обучение и сертификация персонала;

· опытная эксплуатация;

· сдача и подписание актов приемки-сдачи работ.

5. Эксплуатация ИС:

· повседневная эксплуатация;

· общее сопровождение всего проекта.

Модели жизненного цикла информационной системы :

· каскадная модель - предлагает переход на следующие этапы после полного осуществления работ по предыдущему этапу. Модель демонстрирует классический подход в любых прикладных областях;

· итерационная модель - поэтапная модель с промежуточным контролем и циклами обратной связи. Преимущество данной модели - поэтапные корректировки, которые обеспечивают меньшую трудоемкость по сравнению с каскадной. Однако время жизни каждого из этапов рассчитывается на весь период разработки;

· спиральная модель - данная модель делает упор на начальные этапы анализа и проектирования. Эта модель представляет собой итерационный процесс разработки, где каждая итерация (цикл), представляет собой законченный цикл разработки, приводящий к выпуску версии изделия (версии проекта ИС), который совершенствуется от итерации к итерации, чтобы стать значимой информационной системой. При этом каждый виток спирали соответствует поэтапной модели создания информационной системы. Т.о. углубляется и последовательно конкретизируется обоснованный вариант ИС, который и доводится впоследствии до реализации.



Основные способы построения ИС:

· разработка системы "под себя";

· использование прототипов - вместо полной системы создается прототип, отвечающий основным потребностям пользователей:

Определение основных запросов;

Создание рабочего прототипа;

Использование рабочего прототипа;

Пересмотр и улучшение прототипа;

Работа с окончательной версией прототипа;

· использование услуг сторонней организации для передачи функций управления ИС - организация использует специализированную фирму, которая выполняет управляющие функции по функционированию и развитию ИС компании.

Плюсы:

· гарантийное качество обслуживания;

· экономия денежных средств;

· человеческие ресурсы.

Минусы:

· не дешево;

· утечка информации;

· зависимость;

· потеря контроля за ИТ.

Систему управления экономическим объектом можно рассматривать как совокупность двух взаимосвязанных элементов (двух составных частей): субъекта управления (СУ) и объекта управления (ОУ).

Субъект управления представляет собой управленческий аппарат, объединяет в себе сотрудников, разрабатывающих планы, вырабатывающих требования к принимаемым решениям, а также контролирующих их выполнение.



Объект управления представляет собой непосредственно предприятие, которое осуществляет выполнение поставленных перед ним задач. В задачу объекта управления входит выполнение планов, выработанных управленческим аппаратом, т.е. реализация той деятельности, для которой создавалась система управления.

Субъект управления и объект управления связаны прямой и обратной связями. Прямая связь выражается потоком директивной информации, направляемой от управленческого аппарата к объекту управления, а обратная представляет собой поток отчетной информации о выполнении принятых решений, направляемый в обратном направлении (см. рис.12).

Директивная информация порождается управленческим аппаратом в соответствии с целями управления и информацией о сложившейся экономической ситуации, об окружающей среде. Отчетная информация формируется объектом управления и отражает внутреннюю экономическую ситуацию, а также степень влияния на неё внешней среды (задержки платежей, нарушения подачи энергии, погодные условия, общественно - политическая ситуация в регионе и т.д.). Таким образом, внешняя среда влияет не только на объект управления: она поставляет информацию и управленческому аппарату, решения которого зависят от внешних факторов (состояние рынка, наличие конкуренции, величина процентных ставок, уровень инфляции, налоговая и таможенная политика).

Взаимосвязь информационных потоков (П и О), средств обработки, передачи и хранения данных, а также сотрудников управленческого аппарата, выполняющих операции по переработке данных, и составляет информационную систему экономического объекта.

Потребность в управлении возникает при необходимости координации деятельности членов трудового коллектива, объединенных для достижения поставленных перед ними локальных и глобальных целей. Первоначально любая цель носит обобщенный характер и лишь в процессе уточнения она формализуется управленческим аппаратом в виде целевых функций.

В процессе управления экономическим объектом принимаются оперативные , тактические и стратегические решения. В соответствии с этим, обычно говорят, что управленческий аппарат состоит из трех уровней управления: оперативного , среднего ивысшего .

На высшем уровне управления экономическим объектом находятся менеджеры-руководители. Они определяют цели управления, внешнюю политику, материальные, финансовые и трудовые ресурсы, разрабатывает долгосрочные планы и стратегию их выполнения. В их компетенцию обычно входит проведение анализа рынка, уровня конкуренции, конъюнктуры и поиск альтернативных стратегий развития предприятия на случай выявления угрожающих тенденций в сфере его интересов.

На среднем уровне управления экономическим объектом находятся менеджеры-исполнители. На этом уровне основное внимание сосредоточено на составлении тактических планов, контроле за их выполнением, слежении за ресурсами и разработке управляющих директив для вывода предприятия на требуемый планами уровень.

На оперативном уровне управления экономическим объектом находятся менеджеры структурных подразделений (отделов, служб, цехов и т.д.). На данном уровне происходит реализация планов и составляются отчеты о ходе их выполнения. Основная задача оперативного управления заключается в согласовании всех элементов производственного процесса во времени и пространстве с необходимой степенью его детализации.

На каждом из уровней управления экономическим объектом выполняются работы, в комплексе обеспечивающие управление. Эти работы принято называть функциями. В зависимости от целей можно выделить функции различной степени общности. Типичными являются следующие функции: планирование , учет и контроль , анализ и регулирование .

Планирование - функция, посредством которой в идеальной форме реализуется цель управления. Планирование занимает значительное место в деятельности высшего руководства, меньшее - на среднем и минимальное - на оперативном уровне. Планирование на высшем уровне управления касается будущих проблем и ориентировано на длительный срок. На среднем уровне планирование осуществляется на более короткий срок, при этом план высшего уровня управления детализируется. Показатели на этом уровне более точные. Оперативное управление предполагает самую детальную проработку плана.

Учет и контроль - функции, направленные на получение информации о ходе работы предприятия проверки соответствия достигнутых результатов с плановыми. Учет принято подразделять на оперативный , бухгалтерский и статистический . Бухгалтерский учет в свою очередь может подразделяться на финансовый и управленческий . Учет в основном осуществляется на оперативном и среднем уровнях управления. На высшем уровне управления учет отсутствует, однако на его основе в полной мере выполняются анализ результатов производства и регулирование его ходом.

Анализ и регулирование - это сопоставление фактических показателей с нормативными (директивными, плановыми), определение отклонений, выходящих за пределы допустимых параметров, установление причин отклонений, выявление резервов, нахождение путей исправления создавшейся ситуации и принятие решения по выводу объекта управления на плановую траекторию. Действенным инструментом для выявления причин отклонений является факторный анализ, а для поиска путей выхода из создавшейся ситуации -э кспертные системы.

Взаимосвязь между уровнями управления и осуществляемыми ими функциями по объему выполняемых работ представлена в табл.7.

Н а рис. 12 представлена взаимосвязь основных этапов процесса управления экономическим объектом.

Каноническое проектирование АИС


Разработка и проектирование АИС начинается с создания концептуальной модели использования системы. Прежде всего должна быть определена целесообразность создания системы, ее конкретные функции и подлежащие автоматизации задачи. Должна быть выполнена оценка не только целей, но и возможностей создания системы. Далее проводится анализ требований к АИС, детальное проектирование, взаимосвязь этапов, программирование и тестирование, минимизация потерь при переходе от одного уровня представления информации к другому, интеграция в существующую систему, внедрение и поддержка.

Существует три класса методологий проектирования АИС :
· концептуальное моделирование предметной области;
· выявление требований и спецификация информационной системы через ее макетирование;
· системная архитектура программных средств, поддерживаемая инструментальными средствами CASE-технологии (CASE -- Computer Aided Software Engineering -- технология создания и сопровождения ПО различных систем).

Стадия создания автоматизированной системы — часть процесса создания АС, установленная нормативными документами и заканчивающаяся выпуском документации наАС, которая должна содержать модель системы на уровне данной стадии, изготовление несерийных компонентов или приемку АС в эксплуатацию.
Каждая стадия выделена по соображениям рационального планирования и организации работ и обязательно должна заканчиваться определенным результатом. Содержание документации на каждой стадии определяется составом и спецификой работ.
В ГОСТ 34.601-90 определено восемь стадий создания автоматизированных систем:

  1. Формирование требований к АС.
  2. Разработка концепции АС.
  3. Техническое задание.
  4. Эскизный проект.
  5. Технический проект.
  6. Рабочая документация.
  7. Ввод в действие.
  8. Сопровождение АС.
Можно выделить три периода создания системы: предпроектный, проектирование, ввод в эксплуатацию.
Стадии 1, 2, 3 относятся к первому периоду, стадии 4, 5, 6 — ко второму периоду, стадии 7, 8 — к третьему.
В предпроектный период разрабатывают технико-экономическое обоснование (ТЭО) и техническое задание (ТЗ) на проектирование системы. В этот период на стадии формирования требований к АС проводят три этапа работ:
  • обследование объекта предметной области и обоснование необходимости создания системы;
  • формирование требований пользователей к системе;
  • составление отчета о выполненной работе и заявки на разработку системы.
На стадии разработки концепции АС проводят четыре этапа работ:
  • изучение объекта;
  • проведение научно-исследовательских работ;
  • выбор варианта концепции системы из нескольких разработанных;
  • составление отчета о выполненной работе.
На 3-й стадии разрабатывают и утверждают техническое задание на создание АС.
Техническое задание (ТЗ) — это перечень основных эксплуатационных, технологических экономических и других требований, которым должен удовлетворять проектируемый объект на всех этапах его существования.После утверждения ТЗ начинается второй период создания АС — период проектирования системы.
Проектирование — процесс обоснованного выбора характеристик системы, формирования логико-математических и экономико-математических моделей, разработки документации.
На стадии создания эскизного проекта на 1-м этапе разрабатывают предварительные проектные решения по системе и ее частям, на 2-м — документацию наАС и ее части.
На 5-й стадии при создании технического проекта в четыре этапа проводят разработку:
  • проектных решений по системе и ее частям;
  • документации наАС и ее части;
  • документации на поставку изделий для комплектования АС и ТЗ на их разработку;
  • заданий н# проектирование в смежных частях проекта объекта автоматизации.
Третий период — ввод в эксплуатацию АС. Обеспечивают разработку нестандартного оборудования, комплектацию оборудования, материалов, покупных изделий, монтаж, наладку, внедрение.
На 7-й стадии система вводится в эксплуатацию в восемь этапов:
  • подготовка объекта автоматизации к вводу АС;
  • подготовка персонала;
  • комплектация АС программными, техническими, информационными средствами и изделиями;
  • строительно-монтажные работы;
  • пусконаладочные работы;
  • предварительные испытания;
  • опытная эксплуатация;
  • приемочные испытания.
Содержание этапов создания АС на различных стадиях
С целью улучшения управления ходом проектирования каждая стадия детализируется, т. е. разбивается на этапы.
Этап создания автоматизированной системы — часть стадии создания АС, определяемая по характеру работ, его результату или специализации исполнителей.
Современные методологии проектирования систем должны обеспечивать описание объектов автоматизации, описание функциональных возможностей АИС, спецификацию проекта, гарантирующую достижение заданных характеристик системы, детальный план создания системы с оценкой сроков разработки, описание реализации конкретной системы.

Жизненный цикл АИС
В основе создания и использования АИС лежит понятие жизненного цикла (ЖЦ).
Жизненный цикл является моделью создания и использования АИС, которая отражает различные состояния системы с момента возникновения в данном комплексе средств до момента его полного выхода из употребления.

Для АИС условно выделяют следующие основные этапы их жизненного цикла:
1. анализ -- определение того, что должна делать система;
2. проектирование -- определение того, как система будет функционировать: прежде всего спецификация подсистем, функциональных компонентов и способов их взаимодействия в системе;
3. разработку -- создание функциональных компонентов и отдельных подсистем, соединение подсистем в единое целое;
4. тестирование -- проверку функционального и параметрического соответствия системы показателям, определенным на этапе анализа;
5. внедрение -- установку и ввод системы в действие;
6. сопровождение -- обеспечение штатного процесса эксплуатации системы на предприятии заказчика.

Этапы разработки, тестирования и внедрения АИС обозначаются единым термином -- реализация.
На каждом этапе жизненного цикла порождается определенный набор технических решений и отражающих их документов, при этом для каждого этапа исходными являются документы и решения, принятые на предыдущем этапе.
Существующие модели жизненного цикла определяют порядок исполнения этапов в процессе создания системы, а также критерии перехода от этапа к этапу. Наибольшее распространение получили следующие модели.

Каскадная модель предполагает переход на следующий этап после полного завершения работ предыдущего этапа. Эта модель используется при построении АИС, для которых в самом начале разработки можно достаточно точно и полно сформулировать все требования. Это дает разработчикам свободу реализовать их как можно лучше с технической точки зрения. В эту категорию попадают сложные расчетные системы, системы реального времени и другие. Однако, этот подход имеет ряд недостатков, вызванных прежде всего тем, что реальный процесс создания системы никогда полностью не укладывается в жесткую схему. Например, в процессе создания программного обеспечения возникает потребность в возврате к предыдущим этапам и уточнении или пересмотре ранее принятых решений.

Спиральная модель опирается на начальные этапы жизненного цикла: анализ, предварительное и детальное проектирование.
Каждый виток спирали соответствует поэтапной модели создания фрагмента или версии системы, на нем уточняются цели и характеристики проекта, определяется его качество, планируются работы следующего витка спирали. Основная проблема - определение момента перехода на следующий этап. Для ее решения необходимо ввести временные ограничения на каждый из этапов ЖЦ. Переход осуществляется в соответствии с планом, который составляется на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков. Недостатком этого подхода являются нерешенные вопросы и ошибки, допущенные на этапах анализа и проектирования. Они могут привести на последующих этапах к проблемам и даже к неуспеху всего проекта. По этой причине анализ и проектирование должны выполняться особенно тщательной